
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2004; 45:79–108 (DOI: 10.1002/�d.669)

Improvements in the reliability and quality of unstructured
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SUMMARY

This paper presents a reliable and automated approach to the generation of unstructured hybrid grids
comprised of tetrahedra, prisms and pyramids for high Reynolds number viscous �ow simulations.
To enhance robustness, the hybrid mesh generation process starts with the formation of an isotropic
tetrahedral grid. Prismatic layers are then added on no-slip walls fully automatically by obeying user-
speci�ed boundary conditions and three parameters: the number of the layers, an initial layer thickness
normal to the walls, and a stretching factor. Topological modi�cations to the original isotropic tetrahedral
elements are prohibited during the layer generation process. The tetrahedral elements near no-slip walls
are shifted inward and the resulting gap between the tetrahedra and the walls is �lled up with prismatic
elements. To enhance the quality of the prismatic layers around sharp corners, two normals are evaluated
for the marching process in these regions. The addition of prismatic elements is locally stopped if
negative-volume elements are created or not enough space is left. An angle-based smoothing method
ensures that the quality of the tetrahedral elements is retained for a reasonable computational cost. The
method is demonstrated for two scaled experimental supersonic airplane models designed at the National
Aerospace Laboratory of Japan (NAL). Numerical results are compared with wind tunnel experimental
data. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computational �uid dynamics (CFD) has shown a prodigious growth over the last few
decades. The generation of unstructured isotropic tetrahedral grids has been successfully
demonstrated as a sound basis for solving inviscid and low Reynolds number �ows, even
around complex geometries. For high Reynolds number �ows, on the other hand, such un-
structured grids still have issues that need to be addressed. In order to resolve thin boundary
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layers on the solid surface accurately, the grid spacing normal to no-slip walls has to be very
small. A solution is to create high aspect ratio elements near the surface. It may, however,
cause a sti�ness problem for the �ow solver. Moreover, the generation of such anisotropic
stretched grids near the wall is a demanding issue.
To treat 3D high Reynolds number �ows using the unstructured grid approach, several

methods have been proposed for generating the highly stretched grid near to the walls [1–13].
Some of them generate fully tetrahedral or prismatic grids and the others create hybrid grids
consisting of a few types of elements such as prisms and tetrahedra. Although these methods
have shown their capabilities in simulating viscous �ows around 3D con�gurations, their
reliability still needs to be improved in order to treat the sorts of con�gurations encountered
in engineering applications [14].
Hybrid grid generation methods have been developed because they exhibit the advan-

tages of both structured and unstructured grid generation approaches. To capture bound-
ary layers near no-slip walls, prismatic layers are adopted, which realize good orthogonal-
ity and clustering capabilities. Tetrahedral elements are used to �ll the rest of the com-
putational domain. This strategy allows a single mesh to cover a domain even for com-
plex geometries. The �exibility of the approaches enables automatic mesh generation to be
achieved. Moreover, compared with an all-tetrahedral mesh of the same resolution, the pris-
matic section of a hybrid mesh reduces the memory requirements and runtimes for a �ow
solver.
Most hybrid grid generation methods start with the prismatic grid generation near the solid

surface, and the rest of the domain is subsequently discretized by tetrahedral elements. This
conventional approach may treat most of 3D complex geometries. There are, however, di�-
culties in deciding a marching direction for the prismatic layers, in generating grids in small
gaps, in avoiding negative-volume elements and in guaranteeing the quality of the generated
mesh. Because of these di�culties, reliability and quality issues for hybrid mesh generation
still remain.
In contrast, the isotropic tetrahedral grid generation technique is very mature. Therefore,

for viscous grid generation, it is better to utilize the tetrahedral grid as well. Currie [8]
proposed an approach in which isotropic tetrahedral grids were modi�ed for viscous �ow
simulations. From an initially isotropic tetrahedral mesh, tetrahedra on no-slip walls are sub-
divided into anisotropic ones in order to obtain the user-speci�ed number of layers of high
aspect ratio tetrahedra near the walls. The advantage of this approach is that it is easier
to treat sharp corners and to check grid intersections or grid shapes. The approach may
be utilized in a hybrid grid generation method. For complex geometries, however, the con-
trol of the heights of layers becomes di�cult because the tetrahedra on walls have vari-
ous sizes depending on the local mesh density of the surface mesh. In addition, collapsing
small tetrahedra, to reduce the total number of elements in the generation of each layer, is
time-consuming.
L�ohner and Cebral [11] proposed a mesh generation method for high Reynolds number

�ows based on an isotropic tetrahedral mesh. First, all nodes where stretched tetrahedra
are required are removed. Second, new nodes are then added to generate highly stretched
tetrahedra. It is an e�cient procedure for controlling the heights of tetrahedra on no-slip
walls. However, the method sometimes cannot add stretched elements and a re-meshing
process is required. Because of this limitation, the method may not be very
reliable.
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In the present approach, the main objective is to develop a reliable and robust algorithm
for viscous mesh generation. For this purpose, topological modi�cations of originally isotropic
tetrahedral elements, which are the main cause of reducing reliability, are avoided during
the prismatic layer generation process. Tetrahedral elements near boundary walls are shifted
to accommodate each prismatic layer. Prismatic layers are then generated near the walls
by automatically monitoring the mesh validity. By using an isotropic tetrahedral mesh as a
background grid for the hybrid mesh generation, mesh quality control becomes easier.
Another advantage of using isotropic tetrahedral meshes as the initial grids is that the

validity of the grid can be checked by solving the Euler equations beforehand. The meshes
are then used for generating hybrid meshes for viscous �ow simulations. Required analysis
time for a given con�guration may be shortened.
The method for creating prisms around sharp corners is also a critical issue. Sharov

et al. [13] proposed a reliable viscous mesh generation method by modifying the surface mesh
generation to generate high-quality stretched tetrahedra near corners and ridges. Although its
robustness is quite appealing, a large number of elements will be needed to represent com-
plex geometries. Garimella and Shephard [10] employed multiple normal directions at sharp
corners for creating anisotropic elements on no-slip walls. Although smoother transition be-
tween neighbouring elements near the corners may be required, far fewer elements are needed.
This idea is implemented into the present approach in order to keep the required number of
elements to a minimum.
In this paper, a new, robust and fully automated unstructured hybrid grid method based on

isotropic tetrahedral grids is presented. A method to improve the quality of the hybrid mesh is
also presented. The capability of the method is demonstrated for numerical �ow simulations
around two wind tunnel models of experimental supersonic airplanes designed at the National
Aerospace Laboratory of Japan (NAL).

2. SURFACE GRID GENERATION

Figure 1 shows the outline of the mesh generation process. CAD stereolithography (STL) �les
are employed for the surface de�nition. The STL �le format is de facto standard in rapid
prototyping, and the tessellated model de�ned by the STL �le is precise enough to be used
for CFD grid generation. The direct advancing front method based on geometric features is
employed to generate surface grids [15]. This method is e�cient and e�ective for generating
�ne surface meshes and has been demonstrated for various complex geometries successfully
[16–18].

3. VOLUME GRID GENERATION

3.1. Isotropic tetrahedral grid generation

The entire computational domain de�ned by a surface mesh is �rst tessellated by isotropic
tetrahedra [19]. Nowadays, techniques to generate isotropic tetrahedral grid have been well
developed and any computational �eld about complex shapes can be fully automatically �lled
up with tetrahedral cells.
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Surface grid generation 

STL data input

Surface meshing using 
advancing front method 

Reconstruction of geometric features
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Volume grid generation 

Isotropic tetrahedral mesh generation

Addition of prismatic layers

Smoothing for tetrahedral elements

Addition of zero volume tetrahedra

Figure 1. Outline of grid generation process.

3.2. Addition of zero volume tetrahedra

At �rst, a surface normal vector is calculated at each node on the no-slip walls based on the
visibility criterion [2]. These normals are smoothed and are used as marching directions for
the prismatic layer generation except at nodes on sharp corners (de�ned as corner nodes). If
a folding angle at each edge on no-slip walls is more than 150◦, the edge is considered as
a part of a sharp corner. If an edge is bounded by a symmetry plane, the reference angle is
halved. Two marching directions are given to all corner nodes.
To employ two marching directions, some pre-processing is required because the hybrid

mesh generation method starts with isotropic tetrahedral mesh. Therefore virtual elements—
overlapping nodes and edges, zero area triangles, and zero volume tetrahedra—are added on
sharp corners. Figure 2 shows how to modify a surface mesh at a sharp corner. In Figure 2(a),
edge AB is on a sharp corner and nodes A and B will be given two normals. In this case,
nodes C and D, edges AC, BC, BD and CD, triangles ACB and BCD are added as shown in
Figure 2(b). Nodes C and D have the same co-ordinates as A and B, respectively, accordingly
the lengths of edges AC and BD are zero, and triangles ACB and BCD have zero areas. Two
zero volume tetrahedra, which have triangles ACB and BCD, respectively, are added. Each
of the tetrahedra exists merely as a triangular face at this stage. The angles between the
face and the surface normal vectors of the connecting corner nodes must be small in order
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(a)

(b)

Figure 2. Addition of elements at a sharp corner: (a) original surface
mesh and (b) modi�ed surface mesh.

to add prismatic layers easily without creating negative-volume elements. The initially zero
volume tetrahedral, which are considered as part of the unstructured tetrahedral mesh, will
have increasingly positive volumes as each layer of prisms is added.
The normals at nodes A, B, C and D are modi�ed as follows:

�NX =
�N0X + �NMX

| �N0X + �NMX | (X = A; B; C or D); �N0C = �N0A; �N0D= �N0B (1)

where �N0X is the original surface normal, and �NMX is calculated by use of an averaging of
the face normals of the modi�ed manifold, as shown in Figure 2(b). If �NX does not satisfy
the visibility criterion, it must be corrected.
The calculated node normals are smoothed by the following simple Laplacian smoothing:

�Nn+1i =

∑
j
�Nnj∣∣∣∑j
�Nnj
∣∣∣ (2)

where �Nni and �Nn+1i are intermediate and modi�ed node normals of node i, j represents all
surrounding nodes belonging to the manifold of node i. This smoothing is not applied to
corner nodes. The combination of using two normals at sharp corners and this smoothing
method improve the quality of the prisms. To reduce the computational time, the smoothing
starts from nodes near sharp corners. A �nal node normal �Ni is obtained from an initial node
normal �N0i after the smoothing has been applied for twenty iterations.
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In order to correct the height of the prismatic layers in the following section, a correction
value is prepared at each node on no-slip walls.

ci= min

(
1

�N0i · �Ni
; 2:0

)
(3)

3.3. Generation of prismatic layers

The user inputs to generate the prismatic layers are boundary conditions and three parameters
for the layers to be added: the number of the layers np, an initial layer thickness near boundary
walls hmin, and a stretching factor fs. The boundary conditions can be selected from the
following three types:

• No-slip wall: prismatic layers are generated on these walls.
• Far-�eld outer boundary: nodes on the outer boundaries are �xed.
• Cross section (symmetry plane etc.): nodes can be moved on each plane and faces are
added as the prismatic layers are grown up the plane.

No user intervention is required during the process. In this process, the addition of each
prismatic layer is continued until the user-speci�ed number of layers is obtained or the height
of the top layer is compatible with neighbouring tetrahedra. Figure 3 illustrates the mesh
generation process, which is summarized as follows:

1. Rank each node by the minimum number of edges that need to be transversed to reach
a no-slip wall. Let RWi be the rank value at node i. For example, nodes on no-slip walls
are ranked to be zero, and nodes next to the walls are ranked to be one.

2. Rank each node by the minimum number of edges that need to be transversed to reach
an outer boundary or a ‘stagnation’ node. Let ROi be this rank value at node i. Nodes on
an outer boundary or stagnation nodes are ranked to be zero. The stagnation nodes are
de�ned as follows:
i. Compare RWi with RWj at node i. Index j denotes all the neighbouring nodes of node
i. If RWj¿RWi, node i is not a stagnation node.

ii. Shift no-slip walls by the hypothetical total height of the prismatic layers, and shift
the inner nodes in accordance with the no-slip walls using a Laplacian-like method
in order to check the nodes’ tendencies to move. The grid moving method to be
mentioned in Step 7 may be adopted for this purpose. Let Hi be the resulting moving
vector at node i, then calculate the following angle:

�ij= cos−1( �Hi · �Hj) (4)

If the angle �ij¿70◦, node i is considered as a stagnation node. The stagnation nodes
may appear around the centre of a tube, in small gaps and so on.

3. No-slip walls are initially considered as a front-line, and all nodes except those on
outer boundaries are considered as movable ones. The surface normal at each node
on the no-slip walls, �Ni, corresponds to a marching direction for adding the prismatic
layers.
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Figure 3. Coarse mesh generation for an NACA 64A010 wing; its leading
and trailing edges on the symmetry plane.
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4. The mth prismatic layer (m=1 to np) will be created under the front-line, and its height
hm is as follows:

hm=fm−1
s hmin (5)

5. Initialize a displacement vector at each node (D0i = 0).
6. Assign the following displacement vector D0i for each movable node on the front-line.

D0i = �Di
Di = cihm �Ni

(6)

where � is a coe�cient and ci is calculated using Equation (3). This value is essential to
create prisms that are approximately the same height from the front-line [7]. An example
of the prismatic layer generation around a bolt head is shown in Figure 4. Near the no-slip
wall, the height of each prismatic layer is constant. While each node on the front-line
will be shifted by Di, D0i is assigned in order to shift interior nodes adequately. � is
initially set as 1.03, and can be locally assigned a larger number when shifting a node
on the front-line walls is di�cult.
Note that a displacement vector is �rst assigned at each node in Steps 5–8, and then

the nodes will be actually shifted in Step 9 based on the assigned vectors.
7. Assign a displacement vector for each of the interior grid points employing the follow-
ing weighted Laplacian-like method based on the displacement vectors on the front-line
(Equation (6)).

Dn+1i =Dni + c

(
1∑
j rj

∑
j
rjDnj −Dni

)

rj = rWj + rOj (7)

rWj =
1

RWj + 1
; rOj=

1
ROj + 1

where Dni and D
n+1
i are intermediate and modi�ed vectors at node i, respectively, and c is

a coe�cient for convergence acceleration (c=1:44 in this case). The weighting value, rj,
is important to di�use the assigned movements from nodes on the front-line adequately
(rWj) and to keep the isotropic shape of tetrahedra inside tubes and within small gaps
(rOj). The number of iterations of Equation (7), n, is less than 20 if the applied nodes
are sorted by the value, RWi.

8. Assign the displacement vector Di instead of D0i for each movable node on the front-line.
9. Shift each movable node based on the vector Di (see Figure 3(d), for example). In
order to avoid creating negative-volume or �at tetrahedra, new node positions should be
restricted as follows. Figure 5 shows a node and its surrounding triangles in the 2D case.
If the node is moved within the shaded zone, negative-volume and �at elements are not
created. In 3D, the distance between a node and its surrounding triangular faces must
be greater than a certain positive value �. If a small value was adopted, slivers would
be created. If a large value was adopted, the prismatic layer generation would be locally
di�cult. In this case, �=0:5hm is selected.
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Figure 4. Prismatic layer generation around a bolt head.
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Figure 5. New node location: the node can be moved within the shaded
zone of its surrounding triangles in 2D.

10. Check the actual moving distance d0i (6|Di| due to the above restriction) at each movable
node on the front-line.
i. If 06d0i60:7|Di|, node i cannot be shifted and is labelled as immovable.
ii. If d0i¿0:7|Di|, node i can be shifted to accommodate new elements. However, node
i will be labelled as immovable after Step 13 if 0:7|Di|¡d0i60:95|Di|.

11. Generate new elements under the front-line temporarily as shown in Figure 3(e). If a
face on the front-line has
i. one movable node, a tetrahedron is created.
ii. two movable nodes, a pyramid is created.
iii. three movable nodes, a prism is created.

12. To avoid creating negative-volume elements, a control volume is calculated at each mov-
able node on the front-line by using projection planes through the node. Two di�erent
projection planes are employed to avoid computational errors. If the two computed vol-
umes V1i and V2i at node i satisfy at least one of the following conditions, the control
volume is considered negative.

V1i¡0; V2i¡0;
∣∣∣∣V2i − V1iV1i

∣∣∣∣¿10−3 (8)

If negative control volumes are detected, the corresponding nodes are labelled as immov-
able. Then all newly created elements in Step 11 are removed and the procedure goes
back to Step 11.

13. If the number of prismatic layers already created is greater than 2np=3, compare height of
a connecting tetrahedron, Tt , and prism, Tp, at each face on the front-line. If Tt¡1:7Tp,
the addition of prisms will be locally stopped here, i.e. the three nodes of the face are
labelled immovable.
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Figure 6. Node i and connecting tetrahedra that share edge A.

14. Update the front-line and continue Steps 4–13 until the user-speci�ed number of layers
is created or all the nodes on the front-line become immovable.

3.4. Smoothing for tetrahedral elements

Laplacian smoothing is often employed for enhancing mesh quality because it requires a
low computational cost. However, it does not guarantee improving mesh quality and often
creates lower quality or invalid elements. Zhou and Shimada [20] proposed an e�cient angle-
based smoothing method for 2D unstructured meshes. Mesh quality after this algorithm is
much better than that after Laplacian smoothing. Moreover, this approach requires much
lower computational time than optimization-based smoothing. In this subsection, this method
is limited to tetrahedral elements because the prismatic layer generation algorithm in the
previous subsection guarantees the quality of the prisms.
Let us consider each node that is only connected to tetrahedral elements. Node i, whose

co-ordinate is xi, has nti tetrahedra and nei edges. Figure 6 shows node i and the connecting
tetrahedra Tjk (k=1 to nf) that shares edge A. Node j is the other end of edge A and its
co-ordinate is xj. Let fjk be the face of Tjk opposite to node i. In Figure 6, faces fjk (k=1
to nf) are shown as solid triangles. Face fjk has an area afjk and a unit normal vector �Nfjk
pointing toward node i. The average unit normal vector �Nfj and total area afj are de�ned as
follows:

�Nfj=
∑nf

k=1
�Nfjk∣∣∣∑nf

k=1
�Nfjk

∣∣∣ ; afj=
nf∑
k=1
afjk (9)

With respect to the contribution of node j, the new location of node i is

x′
i =xj + |xj − xi| �Nfj (10)
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Figure 7. Node smoothing for an isotropic tetrahedral mesh around an airplane con�guration.

where |xj −xi| corresponds the length of edge A. There are nei neighbouring edges at node i,
and each of their contributions is weighted by its area.

x′
i =

∑nei
j=1 afj(xj + |xj − xi| �Nfj)∑nei

j=1 afj
(11)

This method is e�ective for smoothing tetrahedral elements. However, it does not guarantee
the creation of valid elements. To evaluate the local quality, the shortest distance between
node i and its surrounding faces is employed. The same idea was used in Section 3.3 and
an example in 2D is illustrated in Figure 5. The shortest distances before and after applying
Equation (11) are compared. If we obtain a larger value, the node location is updated.
To demonstrate its e�ectiveness, this smoothing algorithm is applied to a tetrahedral mesh

around an airplane con�guration having three million elements. The skewness of each tetra-
hedron i is de�ned as follows:

�=
Viopt − Vi
Viopt

(12)

where Vi is the volume of tetrahedron i and Viopt is the volume of an equilateral tetrahedron
with the same circumradius. Figure 7 shows a histogram of the skewness of all the elements
before and after the node smoothing. The mesh quality is improved signi�cantly.

4. FLOW SOLVER

The full Reynolds-averaged Navier–Stokes equations that retain the unsteady form are solved
by a �nite volume cell-vertex scheme. The control volumes are non-overlapping dual cells
constructed around each node. The Harten-Lax-van Leer-Einfeldt-Wada (HLLEW) Reimann
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solver [21] was used for the numerical �ux computations. The Lower-Upper-Symmetric Gauss-
Seidel (LU-SGS) implicit method [22] was used for time integration. A one-equation turbu-
lence model by Goldberg and Ramakrishnan [23] was implemented to treat turbulent boundary
layers.

5. APPLICATIONS

The National Aerospace Laboratory of Japan (NAL) has been working on scaled experimental
supersonic airplanes [24–27]. The project will develop two types of experimental airplanes:
a rocket-launched unpowered airplane (NEXST-1 project), and a jet-engine-powered airplane
(NEXST-2 project). In this section, the hybrid mesh generation applied to an NAL NEXST-1
airplane model is shown.

5.1. NAL NEXST-1 airplane model

In this section, the hybrid mesh generation for an NAL NEXST-1 wing=body=empennage
model is presented. Wind tunnel tests have been conducted by NAL with an 8.5% scaled
wing=body=empennage=sting model and a 23.3% scaled wing=body=sting model. Numerical
results are compared with these experimental data in this section.
Figure 8 shows a surface mesh, which has 89 165 nodes, 178 326 faces. Figures 9 and 10

show a hybrid mesh, which has 2 644 204 nodes, 3 138 729 tetrahedra, 4 075 354 prisms and
49 262 pyramids. This mesh, referred as the intermediate or 2:6 M nodes grid, is mainly
used for viscous �ow simulations. The full length of the 8.5% scaled model is L=0:9775m.
Parameters for adding the prismatic layers were as follows: the maximum number of layers of
40, the initial layer thickness of 5:0× 10−7 based on L and the stretching factor of 1.25. At the
sharp corners such as the wing trailing edge, two normal vectors were employed to enhance
the mesh quality. A smooth transition from prismatic to tetrahedral elements is evident. Two
additional meshes were generated for a grid sensitivity analysis. The information on the three
grids is summarized in Table I.
The turnaround time for generating the intermediate mesh from an STL �le is about 6h. Two

hours are required for the surface mesh generation, which includes manual GUI operations
for specifying node distributions on geometric features. Fifty minutes for automatic generation
of an isotropic tetrahedral mesh on a workstation with a 500 MHz Alpha 21264 processor,
having 4 GB of memory. Three hours for addition of the prismatic layers automatically on a
PC with 1:7 GHz Pentium III Xeon dual processors and 2 GB of memory.
The Navier–Stokes equations were solved at a free-stream Mach number of 2.0, a Reynolds

number based on the full length of the 8.5% scaled model, L, of 26:9× 106 and angles of
attack of −2:0◦ to 6:0◦. The selected minimum spacing is adequate for solving the turbulent
�ow because almost all the surface nodes have dimensionless wall distances (y+) of less than
unity. Some nodes on the wing leading edge region had y+ of around 2.0. Figure 11 shows
convergence histories of residual norms, lift coe�cients (CL), and drag coe�cients (CD) for
an angle of attack of 4:0◦. The di�erence, �, based on the value at 2000 time steps, C2000, is
also plotted in each of the latter two graphs. � is de�ned as follows:

�=100
∣∣∣∣Ct − C2000C2000

∣∣∣∣[%] (t¿2000) (13)
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Figure 8. Intermediate surface mesh of a NEXST-1 model.

Although more than 6500 time steps are required to obtain the fully converged solution in this
supersonic �ow, 2000 time steps seem to be practically adequate, for a Courant–Friedrichs–
Levy (CFL) number of 1:0× 105. Note that �uctuations in the CL and CD lie within the range
of ±1:0× 10−5 by the same number of time steps. The other cases described later were also
computed with the same CFL number for 2000 time steps.
Plate 1 shows a computed surface pressure distribution at an angle of attack of 4:0◦. At an

angle of attack of 2:0◦, pressure contours at x=L=0:5 are illustrated in Figure 12. The smooth
transition from prismatic to tetrahedral elements enables smooth pressure distributions to be
predicted. Figure 13 shows the chordwise pressure coe�cient (Cp) distribution at 30, 50 and
70% semi-span stations at an angle of attack of 2:0◦. The wind tunnel data for the two scaled
models are plotted for comparison. The Cp distributions of the two numerical results using
the intermediate and the �ne meshes are approximately consistent. At the wing trailing edge,
the Cp distributions seem to be correct in most of the cases due to employing two normal
directions at corners when adding prismatic layers. At 30 and 50% semi-span stations, the two
wind tunnel models do not give the same results on the upper surface, near the leading edge.
This discrepancy is due to using the small-scaled models, which correspond to the original
CAD models within a speci�ed tolerance [28]. Except in these regions, the numerical result
agrees with experiment well.
CL, CD and pitching moment coe�cients (CM) are plotted versus angle of attack in

Figure 14 to compare the numerical result and the wind tunnel test data for the 8.5% scaled
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Figure 9. Intermediate hybrid mesh for a NEXST-1 model (x=L=0:5).

Figure 10. Intermediate hybrid mesh for a NEXST-1 model: wing leading edge and trailing
edge at 30% semi-span station.
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Table I. Grid information of a NEXST-1 model.

Grids

Coarse (1.4M nodes) Intermediate (2.6M nodes) Fine (4.6M nodes)

Surface mesh # nodes 61 095 89 165 147 730
# triangles 122 186 178 326 295 456

Initial tet mesh # nodes 327 481 562 727 927 843
# tetrehedra 1 768 146 3 085 014 5 083 723

Hybrid mesh # layers 30 40 42
Initial thickness 1:0× 10−5 5:0× 10−7 2:5× 10−7

Stretching factor 1.20 1.25 1.25
# nodes 1 356 482 2 644 204 4 591 418

# tetrehedra 1 825 409 3 138 729 5 167 255
# prisms 1 984 774 4 075 354 7 207 519
# pyramids 56 169 49 262 77 461

model. Computational results using the coarse and �ne hybrid meshes are also presented for
reference. Although the initial layer spacing of the coarse mesh is too thick in regard to the
y+ on the viscous walls, the three grids used predict almost the same result. The compu-
tational results, however, do not agree with experiment data, especially at higher angles of
attack:

• CL: The gradient of the numerical results are steeper than that of the wind tunnel result.
• CD: The numerical results are overpredicted at high angles of attack.
• CM: The gradient of the wind tunnel result is steeper than that of the numerical
results.

In the experiment, the measured data seems to be a�ected by the wind tunnel wall. To
validate this hypothesis, CL and CM are plotted versus CD as shown in Figure 15 (drag polar)
and Figure 16 (CM–CD). The experimental CD’s are plotted with an accuracy of ±3:0× 10−4

(3 counts). Although the numerical results underpredict the pitching moment at high angles
of attack, good agreement is achieved with each case.

5.2. NAL NEXST-2 airplane model

In this section, the hybrid mesh generation was applied to an 8.3% scaled wind tunnel model
of the NAL NEXST-2 (No. 08 con�guration) as shown in Figure 17 [29]. Its geometry is com-
pletely redesigned from NEXST-1. Twin engine nacelles are installed through diverters. Figure
18 shows a surface mesh, which has 167 448 nodes and 334 896 triangles. To represent the
small gap between the wing lower surface and the upper intake lip correctly, adequate nodes
were clustered there. An isotropic tetrahedral mesh, which has 1 304 880 nodes and 7 284 547
tetrahedra, was created based on the surface mesh and prismatic layers were automatically
added to obtain a viscous mesh as shown in Figures 19 and 20, which has 5 465 951 nodes,
7 769 306 tetrahedra, 8 052 167 prisms and 90 801 pyramids. Since 32-bit Windows PC’s can-
not have enough memory for generating such a large hybrid mesh, an SGI Origin 2000 with
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Figure 11. Convergence history of a viscous �ow computation for a NEXST-1 model
(2:6 M nodes, M∞=2:0, �=4:0◦): (a) residual norm; (b) CL and (c) CD.

1 CPU (0.6 GFLOPS nominal computing power) was employed. The required CPU time was
35h and 1:9GB of memory was used at the maximum. The mesh generation process was fully
automatic and the input parameters were: the maximum number of layers of 40, the initial
layer thickness of 5:0× 10−7 based on the full length of the wind tunnel model L=0:9545m
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Figure 12. Pressure contours at x=L=0:5 of a NEXST-1 model (M∞=2:0, �=2:0◦).

and the stretching factor of 1.25. The actual maximum number of layers is 39 because the
top of the layers already had enough height. A coarse mesh is also prepared for reference.
Their grid information is summarized in Table II.
The Navier–Stokes equations were solved at a free-stream Mach number of 1.7, a Reynolds

number based on L of 24:8× 106 and angles of attack of −2:0◦ to 4:0◦. The selected initial
layer thickness of the �ne grid was adequate to solve the turbulent �ow because it ensured
y+¡1:0 on most of the viscous walls (maximum of 2.0). Figure 21 shows convergence histo-
ries of residual norms, CL and CD at an angle of attack of 2:0◦. This simulation required 79
CPU hours and 7:5 GB of memory using an NEC SX-5 single processor (8 GFLOPS nom-
inal computing power) for 3000 time steps, for a CFL number of 1:0× 105. Compared with
the �ow computation, the required computational resources for the prismatic layer generation
were much less. 2000 time steps were adequate to obtain the converged solutions in this
supersonic �ow. The other cases are also computed with the same CFL number for 2000 time
steps.
Plate 2 shows a computed surface pressure distribution, and Figure 22 an oil �ow pattern at

an angle of attack of 2:0◦. Compared to the NEXST-1 model, the �ow physics become more
complicated due to the diverter and the nacelle, which produce strong shock waves. Pressure
contours are illustrated in Figure 23 at x=L=0:6.
The objective of the wind tunnel tests was to evaluate the performance of the airframe, not

of the propulsion system, accordingly the contribution of the internal �ow of the nacelles was
subtracted. On the CFD side, the mesh inside the nacelle was made coarse and its surface was
removed from the integral domain when the aerodynamic coe�cients were estimated. CL, CD
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Plate 1. Surface pressure distribution of a NEXST-1 model (2:6M nodes, M∞=2:0, �=4:0◦).

Plate 2. Surface pressure distribution of a NEXST-2 model (M∞=1:7, �=2:0◦).
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Figure 13. Cp distributions at 30%, 50% and 70% semi-span stations of
a NEXST-1 model (M∞=2:0, �=2:0◦).

and pitching moment coe�cients (CM) are plotted versus angle of attack in Figure 24 that
compares the numerical result and the wind tunnel test data. The computational result using
the coarse mesh is also presented for reference. Because this mesh has much fewer nodes
around the engine intake, the physical phenomena due to the strong shock wave generated
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Figure 14. CL-�, CD-� and CM-� of a NEXST-1 model (M∞=2:0, �= − 2:0 to 6:0◦).

there cannot be captured correctly. Moreover, the initial prismatic layer spacing normal to
the viscous walls is y+ ∼=30. Consequently, the coarse mesh underpredicts the drag in the
entire region by 19 counts, although the �ne mesh also underpredicts the drag by as much
as 15 counts. The wind tunnel wall seems to a�ect the �ow as with the NEXST-1 model
case.
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Figure 17. NEXST-2 08 model.

Figure 18. Surface mesh of a NEXST-2 model.

To exclude the in�uence of the wind tunnel wall, the relations between CL, CD and CM are
shown in Figure 25 (CL-CD) and Figure 26 (CM–CD). There are two discrepancies between
the �ner mesh result and the wind tunnel data:

1. Although the numerical result agrees qualitatively well with the experiment data, it un-
derpredicts the drag by 15 counts.

2. Compared with the o�set wind tunnel data, the numerical result underpredicts the pitching
moment at high angles of attack.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:79–108



GENERATION OF UNSTRUCTURED HYBRID GRIDS 101

Figure 19. Hybrid mesh of a NEXST-2 model (x=L=0:5): (a) wing=body=intake; (b) wing leading edge;
(c) gap between wing and intake; (d) intake corner and (e) outboard intake lip.

With regard to point 1, adaptive mesh re�nement may be needed to capture the shock
waves around the engine intake more clearly. However, considering the coarse mesh, the big
disagreement is not mainly due to the grid sensitivity. The prime reason for the disagreement of
the drag probably originates in the selected turbulence model not being suitable for modelling
such complicated �ow. Thus, further validation is required.
With regard to 2, the tendency is the same as presented for the NEXST-1 model. The wind

tunnel data seem to include a certain error.
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Figure 20. Hybrid mesh of a NEXST-2 model (�=0:3): (a) wing and engine nacelle;
(b) wing leading edge; (c) wing trailing edge (engine outlet); (d) wing lower surface

and upper intake lip and (e) lower intake lip.

6. CONCLUSIONS

An automated hybrid grid generation method has been developed, which has the following
features:

• The hybrid grid generation method starts from an isotropic tetrahedral grid that can
be generated for any complex geometries to enhance the robustness of the generation
procedure.

• The prismatic layer generation is carried out fully-automatically by obeying user-speci�ed
boundary conditions and three parameters: the number of the layers, an initial layer
thickness near boundary walls, and a stretching factor.
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Table II. Grid information of a NEXST-2 model.

Grids

Coarse (2.0M nodes) Fine (5.5M nodes)

Surface mesh # nodes 105 097 167 448
# triangles 210 194 334 896

Initial tet mesh # nodes 588 022 1 372 195
# tetrehedra 3 186 750 7 667 927

Hybrid mesh # layers 22 39
Initial thickness 1:0× 10−5 5:0× 10−7

Stretching factor 1.30 1.25
# nodes 1 961 068 5 465 951

# tetrehedra 3 263 446 7 769 306
# prisms 2 659 695 8 052 167
# pyramids 75 398 90 801

• Each prismatic layer is then added step by step near no-slip wall boundaries automati-
cally, while overall mesh validity is retained. Topological changes for original isotropic
tetrahedral elements are prohibited during the addition process.

• The use of two normals improves grid quality around sharp corners.
• The angle-based smoothing method, which is applied to a tetrahedral domain, improves
mesh quality signi�cantly.

The method was applied to two wind tunnel models of the NAL experimental super-
sonic airplanes in order to check the quality of the generated meshes. Two or three grids
of di�erent sizes were prepared for each model in order to check the grid dependencies of
the solutions. The numerical results of the viscous �ow simulations were compared with
experiment.

NEXST-1 wing=body=empennage model (M∞=2:0, �= − 2:0 to 6:0◦):

• Lift and drag coe�cients agreed well with experiment.
• Pitching moment coe�cients were slightly underpredicted at high angles of attack.

NEXST-2 wing=body=empennage=diverter=nacelle model (M∞=1:7, �= − 2:0 to
4:0◦):

• Lift coe�cients agreed well with experiment.
• Drag coe�cients were underpredicted in the entire region by 15 counts.
• Pitching moment coe�cients were also slightly underpredicted at high angles of attack
compared with the o�set wind tunnel data.

The disagreement of the pitching moment coe�cients at high angles of attack probably
originated due to the presence of the wind tunnel wall. On the NEXST-2 model, drag coe�-
cients of the �ner mesh were lower than experimental values by 15 counts. Further validation
of the turbulence model used in the �ow solver may be required. The computational results
certi�ed that the proposed unstructured mesh generation method generated well-quali�ed grid
distributions for high Reynolds number �ow computations.
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Figure 21. Convergence history of a viscous �ow computation for a NEXST-2 model (M∞=1:7,
�=2:0◦): (a) residual norm; (b) CL and (c) CD.
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Figure 22. Oil �ow pattern of a NEXST-2 model (M∞=1:7, �=2:0◦).

Figure 23. Pressure contours at x=L=0:6 of a NEXST-2 model (M∞=1:7, �=2:0◦).
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Figure 24. CL-�, CD-� and CM-� of a NEXST-2 model (M∞=1:7, �= − 2:0 to 4:0◦).
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